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Abstract— eaky-wave characteristics of a class of nonradiative j A
dielectric (NRD)-guides with various shapes of trapezoidal cross
section are systematically studied for their potential applications a £ a
in low-cost millimeter-wave antennas. A numerical technique is ‘
applied to model these irregular structures. The technique is e

‘,

formulated by effectively combining a multimode network theory 7% d % d
with a mode-matching method. Our emphasis in this work is
on the investigation of parametric effects in connection with the @) (b)

trapezoidal dimensions on leakage properties of the NRD-guide. Fig. 1. Trapezoidal cross-sectional view of two new NRD guide leaky-wave
Extensive results are presented to derive some useful guidelinesstructures proposed for low-cost millimeter-wave antenna applications. (a)
for the design considerations of new types of NRD-guide leaky- Without gap. (b) With gap.

wave antennas.

Index Terms—CAD, field modeling, leaky-wave propagation, In this paper, two new types of leaky-wave NRD-guide with
millimeter-wave antenna, multimode network theory, nonradia- trapezoidal cross sections, which are believed to give more
tive dielectric (NRD)-guide. flexibility in antenna design, are analyzed in a comprehensive

and accurate way. One is full-filled without a gap as shown in
I. INTRODUCTION Fig. 1(a), while the other is with a gap between the top metal
_ _ plate and the dielectric strip in the NRD guide, as shown in
N ONRADIATIVE DIELECTRIC (NRI_D)-gwdes were f!rst Fig. 1(b). The two new structures provide more flexibility in
¥ proposed for use n antenna design and app!|ca_t|onst design of a leaky-wave antenna by changing the geometric
millimeter wavelengths in 1981 by Yoneyama and Nishida U‘JJIimensions of the structures. Also, these antennas may be more

As it is well kpown, waveguide losses increase S'gn'f'camhfractical because keeping an exact rectangular shape during
as frequency increases and usual antenna structures beCH{Qﬁufacturing could be very difficult
more difficult to fabricate in view of the reduced size. Leaky Our field-theory-based analysis given here permits one to
NRD waveguides show a great promise to overcome thesgy, insight into qualitative effects produced by the siznd
problems. I_n addition, the NRD-gwde Iegkijave an_tt—_:‘nna so to determine how large can be before it starts to have
also attractive be(;ause 'of its easy fabrication a}t mﬂhmete&h influence on transmission properties of the NRD-guide as
wave bar;dsr,] by s_ljmplyhl_ntroducmg asymmetry m_btlhef CrOSP millimeter-wave guiding structure. Although measurements
section of the guide. This asymmetry is responsible for the, i |eaky-wave antenna as shown in Fig. 1(a) are available
leaky-wave generation, suggesting that a thorough undegr - o ameter optimization of the structure has not been
starydmg of its parametric effects is vital for an adequa complished yet, and no theory is available to date for the
design of a leaky-wave antenna. Several forms of leaky NRp, ey NRD-guide leaky-wave antennas [6]. In our studies,
waveguide structures have been suggested for millimeter-wavgs shown that the parametric effects are rather complex and
applications [2], [3]. Olineret al. have studied in depth the 5.\ ate theoretical prediction is absolutely required for the
leakage properties of NRD-guide with rectangular profiles [3(],i’esign considerations of any successful NRD-guide leaky-
[4]- wave antenna.
In the present study, a multimode network theory combined
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Fig. 2. Staircase approximation of trapezoidal dielectric profile.

II. THEORETICAL ANALYSIS

Leaky guided-wave characteristics of NRD-guides having .se
irregular cross-sectional shapes are known to be not amenable Lo T Co
to an exact field analysis, even for a relatively simple geo- I XX 1 Xip) L&)
metric profile. Therefore, an approximate but accurate modal ; ; '
analysis must be resorted to. In particular, a method is required
that would be generally applicable to different profiles of
structures. This is important for a comparative study of various
useful structures with consistent result accuracy. We find that
a method using the staircase approximation can be effectively j
applied to the analysis of leaky-wave structures of any profile. o § « oo _

Fig. 2 depicts the approximation of a continuous trapezoidal Xi—_ti X,+—1 Xx_
profile by a piecewise constant step that is known as the
staircase approximation. It is a discretization in geometrig. 3. Equivalent network of modal representation for a step discontinuity.
obviously, that in the limiting case of vanishing step size,
the piecewise constant profile will approach the continuous
one. Therefore, calculated results generated by such a model  E.( <Z Valti, 2)¢n, (i, y)
should converge to that representing the electrical behavior of
the real physical geometry as the step size is decreased. With =
such an approximation, mathematical analysis and physical Z
interpretation on the potential mode coupling phenomena 00
related to the leaky-wave structure can be kept simple and Z (ti, )L (ti, v) (3)
clear. =

With the piecewise constant profile, the cross section of <

' _ 1 + 1 -
Vn(xi‘l); EVn(XH) Vn(Xi )

.o e L .
In(xH)E EIn(x,-_l) LX)

- e N
V (X; V(X V X;) :
, (Ko v XD i) |

"(ti, ©)¢n(t, y)) ()

n=1

NRD-guide may be viewed as a series of step discontinuities w(ti, )t v)
connected by a length of uniform waveguide. The equivalent

network for a step discontinuity may therefore be utilized to + Z I (s, )¢l (1, y)) (4)

||M8H

analyze the leaky characteristics of such an antenna, as the
complete set of discrete eigenvalues and their corresponding
modal functions can be easily calculated for a uniform parallel-
plate waveguide with partially-filled dielectric slab.

n=1

here thee—7%=~ factor is suppressed in the above equations.
11
Fig. 3 describes a basic unit that consists of a step d|S'1 and¢;, are the eigen modal functions for LSM and LSE

continuity between two uniform waveguides at the poin Ao odes, respectively. They can be determined by using a
transmission line method. Here, we employ such simplified
;1 and a uniform waveguide of lengthz; between the

two points z;_; and xz;. Scattering of waves by such anotauons as

step discontinuity between two uniform waveguides has been

rigorously formulated [7]. For completeness and simplicity, Pt y) = k,‘Q d & (ti, v)
the procedure of analysis is briefly outlined as follows. Fin d

In the region between; ; andz;, tangential field com- Pt y) = L _d ot y) (5)
ponents of the total fields in the discretized NRD-guide can " K (ti; y)dy "7

be expressed by
in which &/, and %!/, present wavenumbers of theh LSE
and LSM modes, respectively. At the step discontinuity of
Eyz,y)=y Z V7 (ti, o)l (ts, y) —— (1) =z = z;, the tangential field component,, E., H,, H, must
n=1 e(ti, ) be continuous. From (1)—(4), we derive a set of equations as
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follows: defined by scalar products of modal functions on the two sides
of the discontinuity as follows:
oo 1 — s
Z V (t“ xz)d)//(tzy y) rnn ann <¢rn|¢ >
el e(ti, v) pl = <¢// 1 ‘5/ >
S Vi tier. 200 b1 1) = ©) AT et )|
=) Vi(tivr, z)dn(tivn, y) ——— 6 1 |-
= T et ) Q= <¢:; ¢;>
e(ti, y)
o> o> 1
"y N (4. ! _ 11 /
z_: tlv ‘TZ tl? U) + z_:l Vn (tlv ‘Tl)z/}n(tlv y) ann <¢rn E(ti, y) z/}n>
o R;:zn = <¢;n|r(/)//>
Z (tivr, 2)Pn(tivrs v) R 1 7 >
n=oo mn m E(t“ y) n
"o o\
#3 Vi, w0y, ) ) St =l )
n=1 foranym, n =1, 2, 3, ---. Itis obvious from the above scalar
00 product equations that the matric25 and )’ are responsible
Z L (ti @) (tis v) for the coupling among modes of the same polarization,
n=1 whereasR’ and S’ are responsible for the cross-coupling

among modes of the opposite polarization. Also, it can be

z_: ivs, )¢ (tits, v) () proved that the following matrix identities hold [8]:
B PTQ =Q"P =1 (16)
Z I (b, @)l (s, Z I (ti, )Pt y) PTQ =Q"TpP" =1 (17)
R =-R'7 (18)
= Z L (tir, 2, (tiv1, v) S =Q"R’ (19)
S" =Q'R" (20)

+ Z IH 7-|—1a $7

( it+1 y) (9)

wherel is the unit matrix and” stands for matrix transpose.

Using (12)—(15) and the above matrix identities, the relation-
ship between the voltage and current on both sides of the

It can be easily proved that the eigen modal functighsand ith step discontinuity may be expressed in terms of coupling

¢! satisfy the following orthogonal relation: matrices as B
V=V (22)
(Pl Pr) = bmn (10) - I=pr1 (22)
1 whereV, I, V., I, Q,, and P, are defined by
(/);;l (f)g> I(Smn. (11) [y _ 1"
< e(ti, v) V= “//,} V= F,} (23)
H . . :I// _ I//
Scalar inner product of (6)—(9) with eithef,, or ¢!/ and I= I’} 1= E/} (24)
subsequent use of the orthogonality relation (10) and (11) lead L .
i ionships: P 0
to the following relationships: O; = [ Q’} (25)
- 1! / ! D!
V// :P//V// (12) R — QO S _P./R P :|. (26)
VI+R'V"=Q'V' +5"V" (13) It can be straightforward to show that the super-matriBes
I —pT’ (14) and @; satisfy the following identity:
_ - PIQi=QI P =1. (27)
R/I/ + I// :S/I/ + Q//I// (15)

From (21), (22), and (27), it can be deduced that the input

impedance matrixZ(z; ) at thex = z; plane looking into
whereV’ and I’ are column vectors whose elements are thie right side satisfies

transmission line voltage and current of théh LSE mode, Z(x7) = QiZ(x QY. (28)
denoted asV,/(x;) and I/ (x;). Similar definitions hold for ’

V”and I” for the LSM modes, and also for those vectord e reflection coefficient matrix at the= z;" plane looking
with bar. P/, ', R', and S’ are matrices that characterize thd"t0 the right side can be obtained by

coupling of modes at the discontinuity and their elements are D(z]) = [2(2]) + Zei| [2(2]) — Zei). (29)
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In the uniform waveguide region betweefi ;, andz; , each 0.0 0.2 04 06 08 1.0
mode propagates independently and it can be represented by a 107
transmission line section. Thus, the input impedance matrix at .
thez = x| plane looking into the right side is determined
by the impedance transform technique [8]

Z(z} ) = Zu[l + HT:H)[1 — HiD;H) Y (30)
where Z.; and H; are, respectively, the characteristic 3010'3

=

impedance and phase matrices of itk step discontinuity. ¢
They are all diagonal matrices whose elements are

(Zci)rnn = 6rnanin
(Hi)rnn = Omn €XpP (_jkwlnAxl) (31)

Finally, one plane is selected as a reference plane and the 1077

above equations are used repeatedly to calculate the impedance an

matrix at the reference plane looking into the right side for

= . . . - . Fig. 4. Effect of dimensior on the (normalized) leakage constant, /27
Z and looking into the left side forZ. According to the and propagation constans (ko )? for leaky-wave NRD structure without a

generalized transverse-resonance relation, we have then g as shown in Fig. 1(a) with/\o = 0.423, b/\g = 0.2, ¢ = 2.56.
foIIowing equation: Typical convergence behavior is also presented herewith with respect to the
number of steps chosen in the numerical calculations.

B

0

det <§ v E) —0. 32)
. . . . . the LSE and LSM modes does not reach its maximum. The
This determinant equation (32) governs the dispersion reIat|8n . i .

. L . ecreasing of the leakage after the first peak is due completely
from which the leaky-wave characteristics of the irregular

NRD-guide can be completely determined by searching A9 the cancellation effect. The second peak is also the synthesis

complex roots of the transcendental equation (32) of the maximum coupling and the cancellation effect. It can
P q ' be observed that the cancellation effect actually reduces the

Il. NUMERICAL RESULTS AND DISCUSSION maximum leakage. The decreasing of the leakage after the

. - second peak is because of the weakening of the coupling
In order to quantify the leaky-wave characteristics of NRDs5etween modes withd increasing further

guide for various shapes of trapezoidal cross section, thegjnce in the present calculations the sloping line of the
developed model is applied to generate a large amount 9f .t re is geometrically discretized by the staircase approxi-
num(_ancal results involving parametric effects. L(_at us f'r%ation, the convergence property of the step number is one of
consider the leaky-wave antenna structure shown in Fig. 1(f)e most important factors in the calculation. Fig. 4 also shows
which may be also used as an array feeder structure. WhRR convergence behavior for the calculated results. It is found
d tends to be null, the structure becomes a normal unifofRy; 45 Jong as the step number is larger than eight, the results
NRD-guide, there is no leakage if the design rule of a standdicyjated are good enough for practical use. For a small
NRD-guide is applied. Ag increases from zero, an asymmetryimensijon ofd, for instance, in the first peak region, even four
is introduced, and a small amount of vertical electric field §teps are good enough to obtain accurate results. Fig. 4 also
thus created, which produces a mode in the parallel plate (@jgicates that wheti/ )\ is less than 0.09 (fd/\, = 0.2), the
region) akin to a TEM mode. This mode then propagates ghkage can be neglected, ahdill not affect the performance
an angle between the parallel plates until it reaches the oRETNRD-guide as a normal transmission structure. Of course,
end and leaks away into space. the convergence of results with the number of the modes used
The effect of dimensior on leakage constant and normalin the mode-matching procedure must be carefully verified
ized propagation constant (or effective permittivity) is plottegh the calculation because an infinite summation of modes
in Fig. 4. We note that there appear three main features fggmulated in the dispersion relation (32) has to be truncated
d increases. First, wher is zero, the structure becomeSor numerical analysis. Our practice reveals that only 30 eigen
a normal uniform NRD-guide, no leakage occurs becaufgdes used in the mode matching calculation are good enough
no coupling between the eigen modes in the NRD guidg generate accurate results. From Fig. 4, we can seeSthat
through the dielectric-air interface. Whehincreases from increases ad/ )\, increases. This is because the larger dhe
zero, the leakage becomes significant and increases sharply/tilue, the larger the effective dielectric constant.
it reaches its maximum, then it decreased axreases further.  Fig. 5 presents the variations in leakage as a function
This phenomenon is due to the coupling between the LSE d/)\g with b/)o. The variations are all calculated by
and LSM modes through the sloping dielectric-air interfaceliscretizing the dielectric sloping line to nine steps so that
Second, we observe a dip in the vicinity @f\o = 0.45 (for the accuracy of the calculation is guaranteed. By comparing
b/ Ao = 0.2); it is also physically due to the cancellation effecthe four curves obtained for differedt two main features
[9]. The third main feature is that there is a second peak in thee observed. One is that the first peak decreases rapidly as
leakage curve. This phenomenon is attributed to the fact tlatreases. Wheh/Aq = 0.33, the first peak even disappears.
when the leakage reaches the first peak, the coupling betwéaése other is that the second peak becomes largeireseases,
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Fig. 5. Characteristic variation and parametric effectsadfy /27 as a Fig. 7. Characteristic variation and parametric effects of leakage constant

function of d/Ao with /Ao as a parameter for the structure without a gapagainstb/Ao with d/Ao as a parameter for the structure with a gap and

anda/Xg = 0.423, ¢ = 2.56. a/ro = 0.423,t/Ag = 0.08,c = 2.56. Comparison of our calculated
results is made with [3].

2
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Fig. 6. Dispersion characteristics of the leakage and prop- ’

agation constants for the structure without a gap and withig. 8. Characteristic curves of effective dielectric constant as a function

a = 3.384,b=1.6,d = 1.008, ¢ = 2.56. of b/Ao with d/A\g as a parameter for the structure with a gap, and
a/Xo = 0.423, /Ao = 0.08, £ = 2.56.

and the dimensior! where the leakage constant reaches its . inthe i fEi , | d

maximum decreases. These two features can be interpreted®J€ 9iven in the inset of Fig. 4, ard\, = 0.126 is selecte

the coupling between modes and the cancellation effect. WHBPrder to obtain maximum leakage. We can observe that the

b increases, the point where the cancellation effect occléoPagation constant increases linearly as the frequency in-
will undergo a shift to the left side, i.e., the larger thethe Créases and that the leakage decreases slightly as the frequency

smaller thed where the cancellation effect occurs. Howeveflcreases. This is a very desirable feature because it ensures a
the effect of changing on the maximum mode coupling isStable radiation pattern with low distortions as the frequency
not as significant as the cancellation effect. That is why tfgganning effect is minimized. In other words, such a linear
first peak decreases rapidly while the second peak increaBg§avior gives rise to a possibility of having a stationary-
slower. From Fig. 5 we can also infer that whieis less than directed power radiation pattern if frequency operates over
0.2\, the largest leakage will occur in the first peak, and tis linear window.
relatively small increase af from zero will produce significant From Figs. 7-9, the leaky-wave characteristics are given
leakage. The smaller thiethe smaller thel needed to generatefor antenna structures having a gap. Fig. 7 shows variations
significant leakage. Whenis greater than 0.38, the leakage Of @\o/27 as a function ofb/Ao with d/A\o as a parameter.
is negligible ifd is less than 0.18,. This observation is rather Whend vanishes, we get exactly the same results given in [3],
helpful for determining the manufacturing tolerances for thedicated with ‘e”. It can be seen from the curves that there
transmission waveguide. are two main features. One is a general decrease in the value
In Fig. 6, the leakage and propagation constants are plott#gfde asb increases. This is because tamcreases, the mode
as a function of frequency, where the central frequency é¢supling is reduced and therefore the leakage power decreases.
selected to be 37.5 GHz. The geometrical parameters are Te other is the presence of a dip in the vicinity of certain
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107 ——— N - 03 be extracted from the present analysis for the design of new

i types of NRD-guide leaky wave antennas. Techniques are also
discussed for maintaining the frequency dispersionless leakage
of leaky- wave NRD-guide antennas (or minimizing frequency
scanning effects) and for maximizing the fabrication tolerances
of NRD-guides.
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